Autonomous and remotely operated ships
Tekna – Havneteknisk gruppe og Marinteknisk Selskap
Fremtidens skip og fortøyningssystemer

Øystein Engelhardtsen
24 October 2017
Agenda

1. What is it?
2. How it may look like
3. Current projects
4. The class perspective
5. Is it legal?
“Autonomous Ships” – what does it encompass?

Level of Autonomy

- Traditional Ship
- Operator’s assistance
- Partly or periodically unattended
- Unmanned, fully autonomous
- Unmanned, Remote/Autonomous

Level of unmanned operation

Unmanned, pure remote control
How it may look like

A scenario from the AAWA project
Operation scenario
Connectivity
Remote supervisory control
Remote supervisory control
Monitoring autonomous operation
Autonomous evade
Autonomous evade
Autonomous re-plan
Autonomous re-plan
Autonomous – requiring remote assistance
Autonomous – requiring remote assistance
Monitoring autonomous operation
Operation will vary depending on the ship
Projects
The SIMAROS project
Safe Implementation of Autonomous and Remote Operation of Ships

- **Unmanned offshore vessel**
 - Technology development
 - Development of risk assessment tools and standards
 - Ambition: Enable national regulations and class to allow for commercial unmanned operation
 - Building planned 2018

- **Partners:**
The AAWA project
Advanced Autonomous Waterborne Applications

- **Areas of focus:**
 - Technology
 - Safety and security
 - Societal & legal acceptance
 - Economy and business models

- **DNV GL focus:**
 - Class requirements and assurance of safety and performance

- **Partners:**
 - Rolls-Royce
 - DNV GL
 - Deltamarin
 - TUMA
 - Inmarsat
 - Turun yliopisto
 - University of Turku
 - Åbo Akademi
 - Aalto University
 - Tampere University of Technology
 - VTT
The Autosea project

- **Areas of focus:**
 - Sensor fusion
 - Collision avoidance
 - System architecture

- **DNV GL focus:**
 - Competence on core technologies

- **Partners:**
External project: Autonomous ferry Trondheim

- **Project scope:**
 - Worlds first autonomous passenger- and bicycle ferry
 - Crossing the channel in Trondheim
 - Driven by student projects

Aluminum hull 5 meter long
External project: Yara Birkeland

120 TEU container ship
- Short sea transport (>30 nm)
- Electric propulsion
- Launched 2018
- Unmanned 2019

Key facts (to date)
- LOA: 80m
- Beam: 15m
- Draught: 5m
- Service speed: 6 knots
- Max speed: 10 knots
The class perspective: How to ensure safe implementations?
Areas where DNV GL will have requirements

- Sensor capabilities
Areas where DNV GL will have requirements

- Sensor capabilities
- **Decision algorithms**

From the ReVolt Movie - https://youtu.be/rhYaNHx5D00
Areas where DNV GL will have requirements

- Sensor capabilities
- Decision algorithms
- **Ship-shore communication**
Areas where DNV GL will have requirements

- Sensor capabilities
- Decision algorithms
- Ship-shore communication
- **Machinery design & maintenance**
Areas where DNV GL will have requirements

- Sensor capabilities
- Decision algorithms
- Ship-shore communication
- Machinery design & maintenance
- On-shore control centre
Areas where DNV GL will have requirements

- Sensor capabilities
- Decision algorithms
- Ship-shore communication
- Machinery design & maintenance
- On-shore control centre
- Cyber security
Is it legal?

- **Short answer:** No

- **IMO Conventions:** STCW, SOLAS, COLREGS, MARPOL, ...
 - Written for manned operation
 - References to operator/captain/officer
 - Topic on the agenda at IMO (MSC98/20/2 and MSC98/20/13)
 - Process will take time

- **Flag-states can, however:**
 - Provide exemptions within national waters
 - Make bi-lateral agreements with other states
Thank you for your attention!

Øystein Engelhardtsen
oystein.engelhardtsen@dnvgl.com
+47 92810676

www.dnvgl.com

SAFER, SMARTER, GREENER